Semester : I

Subject: Electrical fundamentals

Theory

TOPICS	LEVEL
3.1 Electron Theory	1
Structure and distribution of electrical charges within: atoms, molecules,	
ions, compounds;	
Molecular structure of conductors, semiconductors and insulators.	
3.2 Static Electricity and Conduction	2
Static electricity and distribution of electrostatic charges;	
Electrostatic laws of attraction and repulsion;	
Units of charge, Coulomb's Law;	
Conduction of electricity in solids, liquids, gases and a vacuum.	
3.3 Electrical Terminology	2
The following terms, their units and factors affecting them: potential difference,	
electromotive force, voltage, current, resistance, conductance, charge,	
conventional current flow, electron flow.	
3.4 Generation of Electricity	1
Production of electricity by the following methods: light, heat, friction, pressure,	
chemical action, magnetism and motion.	
3.5 DC Sources of Electricity	2
Construction and basic chemical action of: primary cells, secondary cells,	
lead acid cells, nickel cadmium cells, other alkaline cells;	
Cells connected in series and parallel; Internal resistance and its effect on a	
battery;	
Construction, materials and operation of thermocouples;	
Operation of photo-cells.	
3.6 DC Circuits	2
Ohms Law, Kirchoff's Voltage and Current Laws;	
Calculations using the above laws to find resistance, voltage and current;	
Significance of the internal resistance of a supply.	
3.7 Resistance/Resistor	2
(A)Resistance and affecting factors;	
Specific resistance;	
Resistor colour code, values and tolerances, preferred values, wattage ratings;	
Resistors in series and parallel;	
Calculation of total resistance using series, parallel and series parallel combinations;	
Operation and use of potentiometers and rheostats;	
Operation of Wheatstone Bridge.	
(B)Positive and negative temperature coefficient conductance;	
Fixed resistors, stability, tolerance and limitations, methods of construction;	
Variable resistors, thermistors, voltage dependent resistors;	
Construction of potentiometers and rheostats;	
Construction of Wheatstone Bridge;	
3.8 Power	2
Power, work and energy (kinetic and potential);	-
Dissipation of power by a resistor;	
Power formula;	
רטשבו וטווועומ,	I

Calculations involving power, work and energy.	
3.9 Capacitance/Capacitor	2
Operation and function of a capacitor;	
Factors affecting capacitance area of plates, distance between plates, number	
of plates, dielectric and dielectric constant, working voltage, voltage rating;	
Capacitor types, construction and function;	
Capacitor colour coding;	
Calculations of capacitance and voltage in series and parallel circuits;	
Exponential charge and discharge of a capacitor, time constants;	
Testing of capacitors.	
3.10 Magnetism	2
(A)Theory of magnetism;	
Properties of a magnet	
Action of a magnet suspended in the Earth's magnetic field;	
Magnetisation and demagnetisation;	
Magnetic shielding;	
Various types of magnetic material;	
Electromagnets construction and principles of operation;	
Hand clasp rules to determine: magnetic field around current carrying conductor.	
(B)Magnetomotive force, field strength, magnetic flux density, permeability,	
hysteresis loop, retentivity, coercive force reluctance, saturation point, eddy	
currents;	
Precautions for care and storage of magnets.	
3.11 Inductance/Inductor	2
Faraday's Law;	2
Action of inducing a voltage in a conductor moving in a magnetic field;	
Induction principles;	
Effects of the following on the magnitude of an induced voltage: magnetic	
field strength, rate of change of flux, number of conductor turns;	
Mutual induction;	
The effect the rate of change of primary current and mutual inductance has	
on induced voltage;	
Factors affecting mutual inductance: number of turns in coil, physical size of	
coil, permeability of coil, position of coils with respect to each other;	
Lenz's Law and polarity determining rules;	
Back emf, self-induction;	
Saturation point;	
Principle uses of inductors;	
3.12 DC Motor/Generator Theory	2
Basic motor and generator theory;	
Construction and purpose of components in DC generator;	
Operation of, and factors affecting output and direction of current flow in DC	
generators;	
Operation of, and factors affecting output power, torque, speed and direction	
of rotation of DC motors;	
Series wound, shunt wound and compound motors;	
Starter Generator construction.	
3.13 AC Theory	2

Sinusoidal waveform: phase, period, frequency, cycle;	
Instantaneous, average, root mean square, peak, peak to peak current values	
and calculations of these values, in relation to voltage, current and power	
Triangular/Square waves;	
Single/3 phase principles.	
3.14 Resistive (R), Capacitive (C) and Inductive (L)Circuits	2
Phase relationship of voltage and current in L, C and R circuits, parallel, series	
and series parallel;	
Power dissipation in L, C and R circuits;	
Impedance, phase angle, power factor and current calculations;	
True power, apparent power and reactive power calculations.	
3.15 Transformers	2
Transformer construction principles and operation;	
Transformer losses and methods for overcoming them;	
Transformer action under load and no-load conditions;	
Power transfer, efficiency, polarity markings;	
Calculation of line and phase voltages and currents;	
Calculation of power in a three phase system;	
Primary and Secondary current, voltage, turns ratio, power, efficiency;	
Auto transformers.	
3.16 Filters	1
Operation, application and uses of the following filters: low pass, high pass,	
band pass, band stop.	
3.17 AC Generators	2
Rotation of loop in a magnetic field and waveform produced;	
Operation and construction of revolving armature and revolving field type	
AC generators;	
Single phase, two phase and three phase alternators;	
Three phase star and delta connections advantages and uses;	
Permanent Magnet Generators.	
3.18 AC Motors	2
Construction, principles of operation and characteristics of: AC synchronous	
and induction motors both single and polyphase;	
Methods of speed control and direction of rotation;	
Methods of producing a rotating field: capacitor, inductor, shaded or split pole	